On the twistor space of a (co-)CR quaternionic manifold
نویسندگان
چکیده
We characterise, in the setting of the Kodaira–Spencer deformation theory, the twistor spaces of (co-)CR quaternionic manifolds. As an application, we prove that, locally, the leaf space of any nowhere zero quaternionic vector field on a quaternionic manifold is endowed with a natural co-CR quaternionic structure. Also, for any positive integers k and l, with kl even, we obtain the geometric objects whose twistorial counterparts are complex manifolds endowed with a conjugation without fixed points and which preserves an embedded Riemann sphere with normal bundle lO(k). We apply these results to prove the existence of natural classes of co-CR quaternionic manifolds.
منابع مشابه
A rigidity theorem for quaternionic Kähler structures
We study the moduli space of quaternionic Kähler structures on a compact manifold of dimension 4n ≥ 12 from a point of view of Riemannian geometry, not twistor theory. Then we obtain a rigidity theorem for quaternionic Kähler structures of nonzero scalar curvature by observing the moduli space.
متن کاملQuaternionic Kähler and hyperKähler manifolds with torsion and twistor spaces
The target space of a (4,0) supersymmetric two-dimensional sigma model with Wess-Zumino term has a connection with totally skew-symmetric torsion and holonomy contained in Sp(n)Sp(1) (resp. Sp(n)), QKT (resp. HKT)-spaces. We study the geometry of QKT, HKT manifold and their twistor spaces. We show that the Swann bundle of a QKT manifold admits a HKT structure with special symmetry if and only i...
متن کاملLinear perturbations of quaternionic metrics II. The quaternionic-Kähler case
We extend the twistor methods developed in our earlier work on linear deformations of hyperkähler manifolds [1] to the case of quaternionic-Kähler manifolds. Via Swann’s construction, deformations of a 4d-dimensional quaternionic-Kähler manifold M are in one-to-one correspondence with deformations of its 4d+ 4-dimensional hyperkähler cone S. The latter can be encoded in variations of the comple...
متن کاملAbout the geometry of almost para-quaternionic manifolds
We provide a general criteria for the integrability of the almost para-quaternionic structure of an almost para-quaternionic manifold (M,P) of dimension 4m ≥ 8 in terms of the integrability of two or three sections of the defining rank three vector bundle P. We relate it with the integrability of the canonical almost complex structure of the twistor space and with the integrability of the canon...
متن کاملLinear perturbations of quaternionic metrics
We extend the twistor methods developed in our earlier work on linear deformations of hyperkähler manifolds [1] to the case of quaternionic-Kähler manifolds. Via Swann’s construction, deformations of a 4d-dimensional quaternionic-Kähler manifold M are in one-to-one correspondence with deformations of its 4d+ 4-dimensional hyperkähler cone S. The latter can be encoded in variations of the comple...
متن کامل